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1. Introduction
An optical microresonator is a device of mi-

cron size that partially traps light. A microlaser is
a laser (pumped active medium that emits coherent
light) designed using a microresonator. Lasers have
a multitude of uses from reading DVDs to welding.
The design of very efficient, very small and very di-
rectional laser emission is of major industrial inter-
est. Aiming for lasers with these characteristics, we
look for resonances (decaying, unstimulated, linear
modes) with high Q-factor and Directivity (defini-
tions below).

The most common resonator geometry is Fabry-
Perot, consisting of two parallel mirrors. More re-
cently, resonators have been designed using total in-
ternal reflection [1], which allows higher reflectiv-
ity in a smaller device, and does not fix the wave-
length unlike parallel mirrors based on Bragg reflec-
tion. Many geometries are possible, for example a
thin circular disk embedded in a material of lower
refractive index.

The classical (ray-optics) picture is helpful here:
a classical orbit is a trajectory in a 2D or 3D billiard,
with the condition that it will escape if it hits the
boundary at too large an angle. The circular billiard
has many orbits that never escape, called whispering
gallery orbits; it has a high Q-factor, however due
to symmetry its directivity is very low. Perturbing
the shape of the boundary improves the directivity,
but at the expense of the Q-value.

We can keep both high Q-factor and directivity
by putting an obstacle in the interior of the disk.
This could be a point, line or hole [2,3], but we pre-
fer a point (physically very small defect or hole) for
which a lot more can be done analytically, and which
suffices to give good directivity (below).

Fig 1: Microdisk parameters

2. Unperturbed microdisk
For a thin passive microdisk, Maxwell’s equa-

tions reduce approximately to the 2D scalar
Helmholtz equation in the plane of the microdisk
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Here neff is the effective refractive index (a function
of the true refractive index and thickness) which we
take to be n inside the disk and 1 outside. k = ω/c
is the wavenumber, which for resonances is analyt-
ically continued into the lower complex half-plane.
Ψ is the field variable, equal to Ez for TM modes
(Hz = 0) or Hz/neff for TE modes (Ez = 0). Other
components of the field may be obtained by differ-
entiating Ψ.

The unperturbed circle is separable in polar co-
ordinates (r, ϕ) leading to modes with e±imϕ depen-
dence multiplied by Jm(knr) inside the microdisk
and Hm(kr) outside. J and H are Bessel and Han-
kel functions of the first kind, respectively, to sat-
isfy boundary conditions at the origin and at in-
finity. m = 0, 1, 2, . . ., with m > 0 modes being
twofold degenerate. We use the radial modal index
q = 1, 2, 3, . . . to label different resonances with the
same m.

The Green function for the microdisk
G (r, r0, k) is given by (see Ref. [4])
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for one of r and r0 greater than R,
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for r and r0 both greater than R, where r< (r>) is
the smaller (larger) of r and r0. The coefficients are
εm = 2− δm,0 and
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′

m (kR)− α2J
′
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with (α1, α2) given by (1, n) for TM and (n, 1) for
TE. The resonances are given by the poles of the
Green function, ie Am = 0 which is the matching
condition between the two regions.

In the semiclassical limit kR � m we find res-
onances at
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If instead we take n → ∞ we find that kR ap-
proaches the real axis at zeros of Jm−1 for the TM
case and Jm for the TE case.

3. Perturbed microdisk
We have previously considered the case of a

point scatterer using self-adjoint extension the-
ory [4]. The equation for the resonance is

Gr(d, d, kres) = λ−1 where Gr is a regularised
Green function evaluated at the location of the scat-
terer d, and λ is a parameter related to the strength
of the scatterer. The results were similar to those
below.

Here we use an explicit small scatterer of ra-
dius a and effective refractive index na at a point
d inside the microdisk. For brevity we restrict to
the TM case. The Green function of the perturbed
disk is found by treating the scatterer in the s-wave
approximation. This results in

G
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where Gsc is the Green function in (2) without the
H0 Hankel function. The diffraction coefficient has
the form D = −4iB0/A0, where Am and Bm are
given by Am and Bm with (α1, α2) = (n, na), and
R replaced by a. The resonances of the perturbed
system are determined by the poles of the Green
function and hence are defined by the equation
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The corresponding field Ψ follows from the residua
of (6) as Ψ(r) = NG(r, d, k) where N is a normal-
ization factor and k is the wavenumber of the reso-
nance. Outside of the microdisk, i.e. in the region
r > R, the field is then of the form
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if the scatterer is located on the positive x-axis. The
s-wave approximation is valid if |nk(R−d)| � 1 and
A0/B0 � A1/B1.

4. Results
As noted above, we are interested in high Q =

|<(k)/2=(k)| and high directivity
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0
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where the field at infinity takes the form Ψ ∼
f(ϕ)eikr/

√
r.

Fig 2: Directivity (red=high) and resonances for R = 1,

n = 3, a = 0.01, na = 1. d is 0.5 (top), 0.7 (middle) and

0.9 (bottom).

Fig 3: Field distribution of unperturbed mode kR =

12.54876 − 10−6i (blue at top and bottom left) and per-

turbed mode kR = 12.54905 − 1.3 × 10−5i (red at top and

bottom right). Parameters are as for the top of Fig 2; if dis-

tances are in microns, this value of k is in the visible part of

the spectrum.

The directivity is remarkable given the small
size of the scatterer. Two observations can help to
understand this:

1. The location of the scatterer at d = 0.5 is
the point at which a parallel beam of light at
infinity would focus according to ray optics
in the paraxial approximation. Compare the
different sections of Fig. 2.

2. The size of the scatterer appears only loga-
rithmically in the expressions.

This gives a definite prediction of where to put
the scatterer in the case n > 2, which would be good
to test experimentally. There is much left for fu-
ture exploration, including further analytics, other
geometries, and extending the s-wave and effective
refractive index approximations.
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