Cosmology
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4 lectures in October 2003

1 History of the hot big bang model

Cosmology is an old subject. Some milestones:

200BC Eratosthenes gave first accurate measurement of the radius of the
Earth, 107 metres, and hence distances to the moon and the sun, using
lunar eclipses. The latter is 10'! metres.

1744 De Cheseaux - “Olber’s paradox”: why is the sky dark? Thus the Uni-
verse is not static, uniform and infinite.

1838 Bessel measured the distance to a star, 61 Cygni, using parallax, a dis-
tance of 10'7 metres.

1915 Einstein’s general theory of relativity, contained a repulsive cosmological
constant term to maintain an apparently static Universe against gravita-
tional collapse.

1920s Hubble measured the distance to Andromeda, 10?2 metres, showing that
it is a galaxy in its own right. He also found that distant galaxies are
receding at a rate proportional to their distance. The size of the visible
Universe was then measured to be roughly 1026 metres. Einstein retracted
the cosmological constant.

1949 Alpher and Hermann predicted the cosmic background radiation; discov-
ered in 1965 by Penzias and Wilson. This supported the big bang model
of a Universe that was originally hot, and disproved the rival steady state
theory.

1992 Small anisotropies in the CMB measured by the COBE satellite.

2001- At present, the WMAP probe is refining these measurements in sen-
sivity and resolution. These measurements indicate that a cosmological
constant (or similar effect) is actually present, causing an acceleration of
the expansion.



The evidence for the standard hot big bang model comes not only from the
observed expansion and the CMB, but also nucleosynthesis (nuclear reactions
resulting in the present distribution of elements in material not processed by
stars), and the connection between early fluctuations and the observed galaxy
distribution. There are a number of questions and problems which we will come
to later.

2 Units

In these lectures, we will set G = 6.7 x 10" "' Nm?kg~2 and ¢ = 3.0 x 103ms !
equal to unity. This is achieved, for example by converting times to lengths ct,
and masses to lengths GM/c?.

Problem

1 Show that G and ¢ can be combined to construct a unit of power (energy per
unit time), and give its value in SI units. What physical interpretation do
you expect this to have?

3 Newtonian derivation of the Friedmann equa-
tion

The basic principles of cosmology follow from Newtonian gravity, without a
detailed knowledge of relativity. This is because we can restrict attention to
a small region near a “fixed” observer. Einstein’s equivalence principle implies
that the laws of physics in a “local inertial frame” of reference are given by those
of non-GR physics, in this case due to Newton.

The cosmological principle states that all locations and directions are equiv-
alent. This is, of course an approximation, in fact only good above about 1023
metres. Notice that the simplest picture, of galaxies receding at a rate propor-
tional to their distance, satisfies this principle. That is, we have

x(t) = xoa(t)

where a(t) = 0 at the time of the big bang and x¢ is constant for each galaxy.
The scale factor a(t) is linear for expansion at a constant rate. In a reference
frame moving with a galaxy at yo we measure a position x' given by

x' = x — ypal(t)

and hence
x'(t) = (%0 — yo)a(?)

which is just a translation of the galaxy positions.



The form of a(t) must be determined by the gravitational attraction of the
matter. The (spatially homogeneous) mass density is given by

p(t) = poa(t)”?

The acceleration of the matter at distance r from the origin is, assuming spher-
ical symmetry and ignoring problems at infinity
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multiplying by a/(t) and integrating, we have
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Now, this is just an effective potential problem - if the constant K (negative
of “total energy”) is negative, the universe will continue to expand, but if it is
positive, it will reach a maximum size and then contract.

The wavelength of any wave phenomena must increase proportional to a(t)
since otherwise some wave crests would be created or destroyed. This gives
quantitatively the amount of redshift of light from distant galaxies.
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where o indicates the observer and s the source. This proportionality between
redshift and distance was what Hubble measured, and the constant (actually a
function of time) a'/a is called Hubble’s constant; the best value is now 71 +
4kms~!/Mpc = 2.3 £0.1 x 10~'¥5s. Quantum mechanics tells us that a particle
with momentum p is described by a wave with A\ = h/p where h = 6.6 x 10734 Js
is Planck’s constant. Thus the momentum of a free particle (not just a photon)
is proportional to a(t)~!.

Now the energy density of light is proportional to a(t)~*; this is because the
photons are getting further apart (like the matter), but there is an extra factor
of a(t)~! from the redshift. Recall that the energy of a photon is E = hc/\.
This would then lead to a cosomological equation of the form

Of course the Universe includes both matter and radiation; we can see that the
radiation is more important at early times (“radiation dominated Universe”)
and matter is more important at later times (“matter dominated Universe”).
At early times, we see that this equation predicts a big bang a(t) = 0 at some



finite time in the past, which corresponds to infinite energy particles. The
cosmic microwave background is the black body radiation from the era at which
the Universe was hot enough to be opaque, redshifted to the present day. The
temperature is about 2.73K.

The third possible contribution to the energy density of the Universe is Ein-
stein’s cosmological constant A. We take this to have constant energy density,
independent of time. Thus we can write
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This is called the Friedmann equation. Note that a positive value of A can
allow a static Universe (stationary point in the effective potential), but that
this situation is unstable.

Note that it is possible to measure K if we know the other terms in the
equation. a'(t)?/a(t)? is the Hubble constant. The rest of the terms, say 8mp/3
should be compared with this. Thus it is often written

o P _ 8mpa(t)’
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The latest observations indicate that @ = 1 with p comprised of roughly 4%
ordinary matter, 23% cold dark matter and 73% dark energy (eg cosmological
constant).

Problems:

2 Solve the Friedmann equation, dropping insignificant terms, in the following
regimes:

(a) Radiation dominated: show that a(¢) = 0 at some finite time in the
past.

(b) Matter dominated: find the present form of a(t) assuming that A and
K are small.

(c) Final state: ignore everything except A. How might the Universe look
at some time in the distant future?

3 If the Universe does recollapse (due to positive K), how do you expect the
final state to differ from the initial state?

4 Relativity

If we want to measure distances in ordinary three dimensional space, we would
write a “metric” like
ds® = dz® + dy® + d2*



which means

for a curve parametrised by A. Linear transformations which preserve length
are rotations. It is clear that the Newtonian laws of physics are invariant under
a rotation; to put it another way, we can choose any system of (z,y,z) axes a
long as they are orthogonal and right handed.

In special relativity there is a space-time metric

ds® = dt* — dz® — dy® — d2?

Positive (in this convention) ds® (“timelike”) measures the “proper” time on a
clock moving through space-time. Thus an astronaut who moves close to the
speed of light and then returns to Earth is younger than his twin who remained
on Earth. Negative ds? (“spacelike”) measures length. Zero (“null”) means a
photon or other object moving at the speed of light. Linear transformations
which preserve the relativistic length are called Lorentz transformations. They
consist of combinations of rotations and “boosts”. The latter correspond to ob-
servers moving with different velocities. The speed of light is, however preserved
by these transformations.

General relativity is a relativistic theory of gravity. In Newton’s gravity,
all objects fall with the same acceleration (ignoring air resistance etc), so that
gravity can be viewed as an intrinsic property of the space, rather than of the
falling object. In general relativity, space-time is curved, so distances are more
complicated than given by the special relativistic formula above. Objects under
gravity move so as to extremise (usually maximise) their proper time; such a
path is called a “geodesic”.

For example, the space-time metric corresponding to a weak, slow moving
gravitational field can be written as

ds®> = (14 2®)dt? — (1 — 2®)(da® + dy?® + dz?)

where ®(t, z,y, z) is the gravitational potential, for example — M /r near a spher-
ical mass. “Weak” here means |®| <« 1. This equation shows that clocks run
more slowly near a massive object, and that there is an increase in the amount
of space. Now, consider the path of a projectile, fixed to the surface of the Earth
at times t = 0 and ¢t = T'. For intermediate times it will maximise its proper
time by rising out of the gravitational potential. It cannot do this arbitrarily
rapidly, however, because it will then suffer the special relativistic time dilation
effect. The actual parabolic path of the projectile in space-time is the result of
balancing these effects. Specifically, assuming ® < 1 and dz/dt << 1 we have
proper time
drj/dt =1+ ® — (dz/dt)?/2 =L

where the L signifies the Lagrangian function since we want to find the station-
ary point of its time integral. This is achieved by the Euler Lagrange equations
OL doL
0z  dt 3
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which is just the Newtonian result.
Note that the length element may look quite different in a new coordinate
system, even for the same space or space-time. For example, we can write

ds? = dz? + dy® + dz?
in Cartesian coordinates, or
ds?® = dr? + r2d6? + r? sin 0d¢?

in spherical polar coordinates, defined by x = rsinf cos¢,y = rsinfsin ¢,z =
rcos ¢. Note that (¢,z,y,z) do not measure physical times lengths in general
relativity; they are just coordinate labels. This raises the question - what is
actually measurable in general relativity? Or, how does a curved spacetime
physically differ from the flat spacetime of special relativity?

The answer, curvature, expresses itself in various ways:

1. Violations in the laws of Euclidean geometry, for example the sum of the
angles of a triangle not adding to 7.

2. Path dependent parallel transport of vectors, and hence no general method
of comparing vectors at two different points.

3. Geodesics which are initially parallel do not remain so; on a sphere (posi-
tive curvature) they converge, while on a hyperbolic space (negative cur-
vature) they diverge.

4. Coordinate invariant quantities calculated from the second derivatives of
the metric.

The space-time curvature in general relativity is determined by the relativistic
analogue of the mass density called the stress-energy tensor, containing energy
density, energy flux and pressure.

G — Agyy = 8T,

where G*¥ is the Einstein (curvature) tensor, given by a complicated formula
involving the second derivatives of the metric, g*¥ is the metric and T#" is
the stress-energy tensor. These equations are unique if we assume that the
curvature is linear in the second derivative of the metric, and automatically
satisfies energy- momentum conservation.

Problems

4 Find a Lorentz transformation that mixes the ¢ and x components.

5 Find an example in which the path taken by a particle in a gravitational field
is a non-maximal stationary point of the proper time.



5 Relativistic cosmology

Einstein’s equations are very hard to solve in general, however if we assume
homogeneity and isotropy, the problem simplifies greatly. It means that the
set of points a given proper time ¢ from the initial singularity form a surface
of constant curvature, a sphere for positive curvature, Euclidean flat space for
zero curvature, or a hyperbolic space for negative curvature. Such a space has
metric
dz? + dy? + dz?
1+ 5@ g2+ 2]

where K is the curvature. In polar coordinates it reads

do? =

dr?

do® = ———
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+ r2(d6? + sin? d¢?)

or a transformation of the radial coordinate gives

K1 sin? x
do? = 1 dx® + x> (d6? + sin? Bdp?)
—-K1! sinh?

for K > 0, K = 0, K < 0 respectively. The Robertson-Walker metric, which
takes account of the expansion, is then

ds® = dt* — a(t)*do?
or a transformation of the time coordinate gives
ds® = a(n)? [dn® — do?]
We compute the Einstein tensor corresponding to this metric, and find

!
Gu = 3a_(t) + 3i
a(t)  a(t)?
This is equal to 87Ty = 8mp where p is energy density as calculated before. Thus
we reproduce the Friedmann equation. The rest of Einstein’s equations only
give a single equation by isotropy, relating derivatives of the expansion to the
pressure. This is equivalent to the one we have by conservation of energy, which
is automatically satisfied by Einstein’s equations. Thus, without a cosmological
constant, a positive curvature Universe will recollapse, while zero or negative
curvature models will expand forever.
Note the distinction between curved space and curved space-time. A flat
space-time has zero density, but in cosmological terms, the spaces of equal time
from the origin are negatively curved.

Problem

6 Find the coordinate transformations defining x and 7.



6 Inflation

Difficulties/questions with the standard hot big bang model:
e The flatness problem - why is K so close to zero?

e The horizon problem - why is the Universe so uniform in causally discon-
nected regions?

e The cosmological constant problem - why is A so small (120 orders of
magnitude less than naive predictions of quantum gravity)?

e What happens at the singularity?
e What is the global topology and why?

e Why the small but nonzero level of density fluctuations (leading to galax-
ies), but no exotic relics?

Derivation of the horizon: We solve the Friedmann equation with radiation
or matter (assuming a sudden switch), and find

2 t<1
a(t) = { t2/3 t>1

where various constants have been absorbed into a and ¢. The time ¢ = 1 cor-
responds to the crossover between radiation and matter, and a = 1 corresponds
to the scale factor at that time. Our own time is roughly ¢ = 150000, a = 3000.
Now, in terms of the conformal time variable 7, the spacetime is simply

ds* = a*(dn? — do?)

so a photon travels a distance given by 7 = [ d¢/a. Thus we compute

_fat 2t1/2 t<1
”_/}{_{3ﬂﬂ—1 t>1
Now, the distance travelled by a photon (assuming the Universe was transpar-
ent) up to recombination is 7(4) = 3.8 and the distance following recombination
is n(150000) — n(4) = 155. Thus the horizon distance is a few percent of the
maximal distance at opposite points in the sky.

There have been a number of attempts to treat the flatness, horizon and
fluctuation problems using inflation in which additional scalar field(s), arising
from quantum field theories, lead to a temporary exponential growth of the scale
factor a(t). In these models, the scenario is something like

1. Begin with scalar field ¢ having potential energy V(¢) relative to its min-
imum (equilibrium) value.



2. It causes an exponential increase in the scale factor through the Friedmann

equation. \
e =3 V@ + 9
and its own equation of motion
" al(t) [ _ 1
¢"(t) + 3w¢ (t)=-V'(¢)

This evolution is supposed to be “slow” (ignore ¢'(t)? and ¢"(t) terms) to
allow the Universe to expand by some large exponential amount.

3. When it returns to its equilibrium value V(¢) = 0 the “kinetic” energy
¢'(t)? is converted into ordinary particles in a “reheating” phase.

4. The standard hot big bang model proceeds as before.

The large amount of expansion solves the horizon problem, and also leads to
predictions of the flatness and fluctuations in agreement with observations. The
fluctuations in particular are predicted to be Gaussian in the cosmic microwave
background observations. However it still does not answer the question of initial
conditions - it just pushes it back to a quantum gravity regime that is not
understood.

Problem

7 How does inflation help? Assuming an exponential expansion before the
decoupling of matter and radiation, show that it is possible to solve the
horizon problem.

7 Determination of cosmological parameters

This is obtained from the following sources of data:

1. The cosmic microwave background radiation. The data consists of mea-
surements of the temperature and polarisation as a function of direction
on the sky. The current temperature of the CMB is 2.73K, redshifted from
the recombination temperature of about 3000K (ie z ~ 1000). Corrections
are usually measured in terms of multipole moments, that is,
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averaged over orientations,
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and then converted to a power density,
{1+ 1)C/2n

The first [ = 1 is the dipole, which is the Doppler effect due to the fact that
we are moving relative to the “fixed galaxies” of the Friedmann model. It
is 6.7mK, indicating a velocity

_ 6.7x107°
A

This dipole is used to calibrate the detector, and then subtracted to give
fluctuations of cosmological origin. These are

¢ = 700kms ™!

e Sachs-Wolfe corrections due to gravitational time dilation and the
time dependence of the gravitational potential.

e Temperature fluctuations in the recombination plasma,
e Doppler shift - velocity fluctuations

e Later scattering events, “reionization” due to the first star formation.

The first three are strongly correlated: an increase in density will lead
to fluctuations in gravitational potential, temperature and velocity. Light
is polarized through scattering events, so polarization measurements give
additional information about the latter.

At the largest scales (small /) the Sachs-Wolfe effect dominates, leading
to a plateau in the spectrum, and giving information about the density
fluctuations at different scales. At smaller scales peaks and troughs are
observed, due to acoustic modes of oscillation, giving information about
the content of the plasma (eg proportion of baryons). In addition, fairly
early reionisation has been observed, indicating cold (rather than hot)
dark matter is present to help the gas to clump, forming stars at z ~ 20.
There is also an indication that the lowest [ = 2,3 terms are smaller than
suggested by present theories, due to a nontrivial topology of the Universe.
A recent paper in Nature suggested a dodecahedral topology in a positive
curvature Universe, but the data is not conclusive.

. Large scale structure observations (including the distribution of galaxies,
velocities of galaxies, gravitational lensing using dark matter, reinforce
information about the strength of fluctuations, but need numerical sim-
ulations for comparison since the formation of clusters of galaxies etc. is
nonlinear.

. Deuterium is produced in the big bang, but destroyed in stars. Thus
observations of its abundance can put limits on parameters such as the
baryon density.

. The Hubble constant (present expansion rate) can be measured directly
using distances and velocities of galaxies. It depends on the assumptions
made in measuring distance.

10



5. Limits on the age of the Universe can be obtained from dating the oldest
stars. Many of these are about 12Gyr, close to predictions from other
sources.

All data need to be combined together to make a best fit to parameters. As
noted above, this seems to be about 4% baryonic matter, 23% cold dark matter,
73% cosmological constant, zero curvature, Hubble constant 72 km/s/Mpc, age
about 13.7Gyr.

Problems

8 Assuming that the Universe is now 27% matter and 73% cosmological con-
stant, calculate the percentages at times when the Universe is (i) half, (ii)
double, its current size.

9 Identify as many as possible assumptions made in estimating the cosmological
parameters. In what ways could new data or theories affect the conclusions
about current values of parameters and the cosmological evolution of the
Universe?

8 Cosmological chaos

Chaos can occur in two places in general relativity, in particle trajectories and
in the Einstein field equations. In both cases there is a fundamental issue to
do with the coordinate freedom: Chaos must be defined in terms of coordinate
invariant properties. For example the maximum Lyapunov exponent

t _ ft
Amax = lim lim 1 In |f ($0 + 6) f (.’11'0)|
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is defined in terms of the non-invariant quantity ¢; a different definition would
give a different result, including 0 or co. In fact, this caused quite a lot of
debate in the 80s and 90s for the Mixmaster cosmological model (below). It was
resolved using fractal dimensions, which are coordinate invariant (technically
diffeomorphism invariant).

Examples of chaos in the field equations are the Mixmaster cosmological
model, which is the most general assuming homogeneity but allowing three
different scale factors in the z,y, z directions. This leads to six coupled ODEs
replacing the Friedmann equation (the minimum required for chaos is three). It
is not realistic cosmologically, but is thought to describe general singularities.
Chaos has also been observed in models containing a scalar field, similar to the
inflation scenario considered previously.

Let us now turn to the case of photons propagating through the Friedmann
universe. If the Universe is compact, its size in comoving coordinates is constant,
so chaos in these coordinates has an invariant meaning. We will use Lyapunov
exponents, noting that the stability and topology of periodic orbits are invariant.
It is then reasonable to extend the definition to open universes. As in computing
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the horizon length, we remove the scale factor by going to conformal time 7.
And as in the Newtonian case, we introduce a gravitational potential using weak
field and slow moving assumptions:

1-29
[1+ 5 (22 + 92 +22)2

ds* = a*(n){(1 + 2®)dn* - (dz?® + dy? + dz*)}

This is accurate to about ten percent - there are relativistic neutrinos and to a
lesser extent gravitational waves.

The separation between two trajectories in relativity is given by the geodesic
deviation equation. Using the Lagrangian formalism we see that the geodesics
are described by an equation relating the second derivative of position with
the first derivative of the metric coefficients. Looking at two closely spaced
trajectories will involve another spatial derivative, leading to a term involving
curvature, or in Newtonian terms, tidal forces. This is indeed the case: the
geodesic deviation equation is

D2€a o
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where ¢ is the separation, R is the Riemann curvature tensor, and V is the
tangent vector to the trajectories. Computing the curvature (a complicated
task), comparing photons at the same 7, and ignoring perturbations in the
direction of motion which don’t contribute, we find

d_2(§>__(K+2<I>55+<I><< 2%, )(5)
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Note that in the absence of perturbations, the equation just gives a sinusoidal
function for positive curvature (the sphere), a straight line for zero curvature
(flat) and a hyperbolic function for negative curvature. The Lyapunov exponent
indicates chaos in the latter case. Note that one method of studying Hamiltonian
systems is to convert the problem to geodesic motion on a curved space, and
show the curvature is always negative.

The behaviour of the perturbed case is very interesting. Let us consider the
one dimensional analogue (two dimensions doesn’t change much). The equation

2
o = —(45m) - u. 1)
describes an inverted pendulum with pivot moved according to the function
f(n). I f(n) is a cosine, we have the Mathieu equation which has a very
complicated behaviour called parametric resonance. A naturally stable system
can become unstable if the frequency of the perturbation is related to the natural
frequency of oscillation. Likewise a naturally unstable situation can be stabilised
by a sufficiently rapid oscillating perturbation as first noted by Kapitsa. In the
cosmological case the perturbation must be sufficient to change the sign of the
curvature.
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Let us determine conditions under which a stochastic perturbation can sta-
bilise the motion. Split u(n) into fast and slow components

u(n) = (u(n)) + ug(n)

where the average is over a time much greater than a typical frequency of the
perturbation. Substitute into the equation of motion and average:
d”{u)
Tt = () = AUy ()

then subtract, noting that in the high frequency limit we have Af > 1 ~ (u) >
Uy.

d?u
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Now (u) is roughly constant, so we can integrate twice to get

[ 1o = o)
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where constants must be chosen to keep the averages of these quantities zero.
Then we have

uy = —Az(n)(u)

substituting into the previous expression we have

& (u)
dn?

Thus the stability criterion is that A2/(w?|K|) (now putting back the curvature)
should be roughly greater than one. Note that the stochastic perturbation
must not have low frequency components or this analysis may not hold. In the
cosmological case, the density is homogeneous at large scales, so this is quite
reasonable. The frequency and amplitude of fluctuations are also sufficient to
see this stabilisation. These results show that, whetever the value of K (which
is still somewhat uncertain), the photon trajectories are strongly stabilised.
Stochastic stabilisation has many non-cosmological applications, which we are
currently investigating. More details of this work are in the paper at
http://www.arxiv.org/abs/nlin.CD /0305056

= (u)(1 = A2(f(m)a(n) = (u)(1 — A*{v(1)*))

Problem

10 Integrate the one dimensional equation numerically using noise given by a
sum of many random cosines with a minimum frequency high compared to
the constant expansion rate. Find how large the minimum frequency must
be for your choice of random distribution, and check the above stabilisation
criterion. A solution is given in the above paper.
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